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I. INTRODUCTION

In recent years, a considerable research effort has been focused on the
development of modern predictive capabilities for determining the aerodynamics
of projectllns. The time-dependent Navier-Stokes computational technique has
heen used!”2 to compute the flow over projectiles at transonic speeds. For
supersonic flows, space-marching parabolized® Navier-Stokes computational
technique can be effectively used. However, this technique fails for flows
containing 10ngitudinal flow separation. In such cases, which are frequently
encountered in projectile aerodynamlc simulations, the time-dependent Navier-
Stokes technique needs to be used."“

The time-dependent Navier-Stokes equations can bhe solved in a generalized
body-fitted coordinate system, Many actual projectile configurations contain
sharp corners and steps. These sharp geometric variations make it extremely
difficult to generate body-conforming grids while preserving the sharp cor-
ners, The grid lines are wrapped around the corners and, in many cases, such
wrap around grids are skewed near these corners and steps. !Using such grids
introduces geometric errors and sometimes leads to loss in both the computa-
tional efficiency and accuracy. In this report we develop and apply a flow-
field blanking procedure which allows computation of practical flows of inter-
est with no geometric error since it models the corners and steps exactly.

To avoid geometric errors one can blank out the flowfield in specific
regions in the computational domain. Examples where such blanking can be
useful are shown in Figure 1., Continuous straight line grids can be used for
these cases and the hatched regions are the ones where the flowfield is to be
blanked out. This procedure, thus, preserves the sharp corners and steps. In
addition to zeroing out the flowfield inside the hatched regions, additional
changes must be made in the boundary conditions and the computational algo-
rithm near these surfaces. These changes are described in a later section.
This technique can be tested with the simple problem of flow over a rotating
band, The rotating-band, which is a protuberance on the artillery shell,
imparts spin to a shell during launch., However, it does contribute a small
unwanted drag in free flight., A schematic of the rotating-band flowfield is
shown in Fiqure 2. It shows the expected recirculation regions in front of
and behind the band and the associated compressions and expansion waves. A
numerical solution is obtained for this problem at M_ = 3.0 and a = O,

[T, COMPUTATIONAL TECHNIQUE
1. GOVERNING EQUATIONS

The complete set of time-dependent generalized axisymmetric thin-layer
Navier-Stokes equations is solved numerically to obtain a solution to this
problem, The numerical technique used is an implicit finite-difference
scheme, Although time-dependent calculations are made, the transient flow is
not of primary interest at the present time. The steady flow is the desired
result which is obtained in a time asymptotic fashion,

The azimuthal-invariant (or generalized axisymmetric) thin-layer ‘lavier-
Stokes enuations for curvilinear coordinates £, n and ¢ can be written as:!

AT AT T O T T T P I S PP R

) J\'\\ Nl

RN NN

By & v Y v

s e v -

o’ u

AR S %N Yy

O"-{",

|

A Ay 4t ey

ARAARS



where

and

pu

J71 pv

L0

ow

s ag ]

u(cx2 * ey

a Rl

(¢ 2 LA
flg, =+ Gy &y

Q)
ln»

[-%]
-

t is the time

E =971

J'l

>

o

£(x,y,z,t) is the longitudinal coordinate
n(y,z,t) is the circumferential coordinate

t(x,y,Z,t) is the near normal coordinate

U
puU+E p
vU+ ,
P Eyp
DMJ+€ZD

| _(e+p)u-g,p ]

6 =J71

-

n
n

pV[RE(U-gt) + R;(W-ct)]
-oVRe_(V-n,) - p/(Re,)

0

—

0

u(e, 2+ g 2 v g2 v (W) (g + gyv

2+ g2, + (w35
2 2 2

u(C‘ *Cy v, )wC + (u/3)(cxuC ‘v

)0 (u/2) (u? + v+ w?),

¢ /N (eu v gv o g (e

8%, )8y

KUg ¢ Syve t ey

+ ¢ W)L

ys z2g5 2

+ ~<Pr'1 (y-1

+

&

x Y

oW
puW+g, p

pVN+CyP
pwW+gp

(e+p)w-ctg_

o

)72

B 2 Lo g ais S ke S aan A £ bie i At a8 e foe on Bla St Gd D808 Bl Dol T Yk At Dl T NS IR R T St - St b




The velocities

U= §¢ +Eu+ €yv g
V=g #nud gy b onw (2)
W= G + Gu cyv g

represent the contravariant velocity components.,

The Cartesian velocity components (u, v, w) are nondimensionalized with
respect to a_ (free stream speed of sound). The density (p) is referenced

to p, and total energy (e) to p,auz. The 1ocal pressure is determined using
the equation of state,

p=(y-1)le - 0.5(u2 + v2 + w?)] (3)

where y is the ratio of specific heats.

While Equation (1) contains only two spatial derivatives, it retains all
three momentum equations, thus allowing a degree of generality over the stan-
dard axisymmetric equations. [n particular, the circumferential velocity is
not assumed to be zero, thus allowing computations for spinning projectiles or
swirl flow to be accomplished.

2. COMPUTATIONAL ALGORITHM

The azimuthal-invariant, thin-layer MNavier-Stokes equations are solved
using an implicit approximate factorization finite difference scheme in delta
form.® An implicit method was chosen because, for viscous flow problems, it
permits a time step much greater than that allowed by explicit schemes. The
Beam-Warming implicit algorithm has been used in various applications!™9 for
the equations in general curvilinear coordinates. The algorithm is first-order
accurate in time and second- or fourth-order accurate in space. The equations
are factored (spatially split), which reduces the solution process to one-
dimensional problems at a given time level, Central difference operators are
employed and the algorithm produces block tridiagonal systems for each space
coordinate, The main computational work is contained in the solution of these
block tridiagonal systems of equatinns, For the computation of turbulent
flows, the two-layer algebraic Baldwin-Lomax turbulence modell? is used.

3. FINITE-DIFFERENCE EQUATIONS

The implicit, approximately factored algorithm developed by Bean-
Warming® has the form:
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where the explicit fourth-order dissipation is:
(w) .
= - “ir(y 2 v 2 n
D €gdtd [( EAg) + ( CA;) Y q

and the implicit second-order dissipation terms are:

62) tJ" (v
g = - €l J i EAE

52) tJ"(v a )
¢ = - £qb ( CA;) .

W

The fourth-order explicit dissipation is used to control non-linear instabil-
ities whereas the implicit dissipation is included to stabilize the explicitly
treated fourth-difference terms, The parameter ¢ is 0(1) and the parameter
€ is two to three times €ae The Jacobian matrices A -'25 , C = EE along with

-~ 99 aq
coefficient matrix M obtained from linearization of S are described in detail
in Reference 8.

e

To suppress high frequency components that appear in regions containing
severe pressure gradients, e.g., shocks or stagnation points, a switching
dissipation model is used. This switching model is similiar to the model used
by Pulliam? and uses a fourth-order dissipation in smooth regions and switches
to A second-order dissipation in regions containing high pressure or density

(u)
gradients, The dissipation term D on the right hand side of Equation (4)
can he written in this model as:

‘J‘—‘HA,II (6 cg 1238 6J q- 8¢, 6870 ql (5)

where the first term is the second-order dissipation and the second term con-

tains the fourth-order dissipation. The coefficients €4 and €o are the asso-

ciated coefficients for the second-order and fourth-order dissipation, respec-

tively. The coefficient €4 is fifty to hundred times €q dnd 4 and 7 are the

one-sided forward and backward finite-difference operators. Mote that the
fourth-order dissipation is non-linear in that the coefficient is not a con-
stant and 1s scaled hy spectral radins [[A_|l. The two terms 1n Eguation (5)
are of the form 6adB where:
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Q. + a. a: + Qa.
AL T i j * %51 _
(608 = (I3 (o - 5) « (T sy -y )

Fourth-order dissipation is used if €e > €4 VAp| and the dissipation is

va
ds! -

switched to second-order if €a < e The pressure gradient is used in

the normal direction in this switchlng control whereas density, as shown in

Equat1on (5), is used in the longitudinal direction, In addition, a space
varying® At procedure is used where the time step used is given as:

st = Vet (6)
1 + /3

where ) is the Jacobian of the transformation and (At)ref is a reference time
step.

4. FLOWFIELD BLAMKING

The idea is to 2void geometric errors that may arise from wrap around
grids. Instead, we use straight line grids as shown schematically in Figure
3. For the rotating band problem, the zone ABCD is part of the body and the
flowfield in this zone must be blanked out in the computational domain., As
shown in Fiqure 3, the sharp corners and steps ahead of and behind the band
are preserved and no approximation is made, It is also necessary to apply
boundary conditions on the zonal surfaces AB, BC and CD. The no-slip boundary
conditions are used at these boundaries along with zero gradients for pressure
and density. In addition, at neighboring points to these boundaries, we use
second-order spatial difference and smoothing, The block tridiagonal matrix
structure has been modified for continuous integration sweeps through such
zones, For example, the block tridiagonal matrix in the £ direction takes the
following form (after setting e; = 0 to simplify the illustration)

1 Aq aq, RHS,
-A‘ll_z I AJl . .
0 I 0 8a;, = 0 (7)
0 I n Aqy, .
-Ajp 1 A)our . 0
-AJMax-2 L A9 MAx -1 HSmax-1
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Here A's denote the quantity 2%% Aand ] is a 5 x 5 identity matrix., Note the

appearance of the uncoupled block tridiagonals between J = J1 and J2 corre-
sponding to lines AB and NC, respectively. The rows at J1 and J2 are particu-
larly simple hecause boundary conditions are updated explicitly at the end of
inversions. All the changes described in this section were easily implemented
in a modular fashion into an existing code for projectile flow computations.
One simply fills the block tridiagonal matrix ignoring the zone. Elements in
the rows inside the zone are then overloaded as shown above. The flowfield
blanking affects the block tridiagonal matrix in the g direction similarly,
Although, we have only one zone for the rotating band case, changes have been
made in the code to blank out multiple zones.

IIT. RESULTS

A1l the numerical computations were made at M_ = 3.0 and a= 0. The

projectile configuration with the rotating band which was used in this study
is shown in Figure 4. This model is a cone-cylinder configuration with a
13.1° cone angle. The band height is .04 D and the width is .505 D. The same
model was used in the experiments!l which were conducted in the US Army Chem-
ical Research Development and Engineering Center's Supersonic Wind Tunnel,
Surface pressure measurements have been made ahead of and behind the band
which are used to compare with the numerical results,

g Since the freestream flow is supersonic, the space marching Parabolized
| Navier-Stokes code3 was used to compute the solution over the forebody of the
projectile (See Figure 5). This generated a solution at a station 30 band
heights ahead of the band which was then used as an upstream boundary con-
dition for the computation of the flowfield containing the rotating band, For
this part of the flowfield which includes the band, the unsteady or time-
dependent Navier-Stokes computational technique described earlier was used.
Such composite solution technique allowed a large number of grid points to be
r used in the vicinity of the band,

‘ The computational grid used for the numerical calculations is shown in
| Figure h. It consists of 139 points in the longitudinal direction and 6]

points in the normal direction. The grid points are clustered near the sur-
! face of the cylindrical part with a minimum spacing of ,00002 N. The resolu-
| tion of grid points on the top of the band is not as fine, Grid points in the
i Tongitudinal direction are clustered near the upstream and downstream corners
: of the rotating band where appreciable changes in the flow variables are ex-

pected., In Figure 6, the grid lines inside the band are omitted to show the

position of the band; however, in the actual grid used in the computations,
: there are continuous grid lines inside the band and those are the lines where
i the flowfield blanking procedure is used,

For comparison purposes, a numerical solution is first obtained for flow
over the cylindrical part of the projectile without the rotating band at M =

3.0 and « = N, The computed surface pressure coefficient is plotted 1n Figure
7 as a function of longitudinal position, The computed result is in very Jood
agreement with experimental data,!!
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Numerical results obtained for the rotating band case are presented
next. Figure 3a shows the velocity vector field in front of the band and as
expected, it shows the recirculatory flow in that region. As shown in this
figure, the flow seems to accelerate as the corner of the band is approached,
Figure 3b shows the velocity vectors behind the band. The flow expands at the
corner of the band. A recirculation region can be observed clearly. Figures
9a and 9b show the stream function contours ahead of and behind the band, re-
spectively, The recirculatory flow regions can be clearly seen in these fig-
ures., The reverse flow region extends about four band heights ahead of the
band and the reattachment point is less than a quarter of the height of the
band from the corner. The size of the recirculation bubble behind the band is
a little smaller than the one ahead of the band. The flow seems to separate
slightly below the band corners and reattaches about 3.5 band heights down-
stream. Figure 10 shows the pressure contours for this case., One can also
see a separation shock wave ahead of the band. The shock wave is located just
ahead of the flow separation reqion. The strong flow expansions at both the
hand corners can be clearly seen. The expansions at the downstream corner is
followed by a recompression shock. The surface pressure coefficient for the
band case is shown in Figure 11 as a function of the axial position, The
solid line is the computed result, the dashed line is the result obtained for
the case without the band and the circles are the experimental data for the
band, There is a considerable change in the pressure due to the presence of
the band., The sharp rise in pressure ahead of the band is associated with the
shock wave which actually precedes the separation point of the boundary layer
flow. The flow then expands at the corner and pressure drops. No significant
change in pressure occurs on the top of the band. At the backward step of the
band, the flow expands again which results in the sharp decrease in the pres-
sure, This is followed by a more gradual return to the ambient pressure down-
stream, The computed surface pressure is in good agreement with the experi-
mental data measured ahead of and behind the band. The small discrepancy
found in the comparison could be due to the turbulence model used.

IV. CONCLUDING REMARKS

The HNavier-Stokes computational technique has been used in conjunction
with a flowfield blanking procedure for numerical simulation where the sharp
corners and steps exactly modeled, thereby, avoiding any possible source of
geometric errors, This procedure has been applied to the flow over a rotating
hand at supersonic speed.

Computed results have been obtained for M_ = 3.0 and a = 0 and compared

with available experimental data., The results show the recirculation region
both ahead of and behind the rotating-band as well as the associated
compression and expansion waves, The computed surface pressures for both
cases, with and without the band, are in fairly good agreement with experi-
mental data., The present numerical procedure is simple to use and seems to
predict the flowfield correctly. Further work 1is needed to extend this
technique to gredict three dimensional flow fields. In addition, a parametric
study will be conducted 1n future to predict the effect of the rotating-band
nn the aerudynamic coefficients for artillery shell,
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LIST OF SYMBOLS

a = speed of sound
Cp = specific heat at constant pressure
Cp = pressure coefficient, 2(p_a2p - p_)/p Ul
D = body diameter
e = total energy per unit volume/p_a2
é, F, g = flux vector of tranformed Navier-Stokes equations
H = n-invariant source vector
J = Jacobian of transformation g
M = Mach number f
-
p = pressure/p aZ
Pr = Prandt] number, “.Cp/‘g :f
R = body radius :
. *
Re = Reynolds number, o_a_D/u_
~ o«
S = viscous flux vector :;'
.‘.
, , N,
t = physical time %
v
o7
U,V,yW = Cartesian velocity components/a_
\.l
U,v,w = contravariant velocity components/a_ ;
o
X,Y,2 = physical Cartesian coordinates -
a = anqle of attack w
T
” = ratio of specific heats -
< = coefficient of thermal conductivity/x, :;
~
" = coefficient of viscosity/u_
£,1,8 = transformed coonrdinates in axial, circumferential and radial 2
directions A
-'\j
> = density/o a;’

1&

%

L = forward Aitterence
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LIST OF SYMBOLS (Continued)

v = backward difference

$ = central difference

T = transformed time

€5 = implicit smoothing coefficient

€4 = second order dissipation coefficient
€o = fourth order dissipation coefficient

Sugerscrigt

<R

FYAT
‘s N\
. . .n {.
* = critical value SN,
. r:’;:'
Subscript :~$'
. o
] = longitudinal direction ‘
“
I = identity matrix o
® = free stream conditions for corresponding dimensional quantity '
g = streamwise direction
4 = normal direction
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